Fully-Dynamic Approximation of Betweenness Centrality
نویسندگان
چکیده
Betweenness is a well-known centrality measure that ranks the nodes of a network according to their participation in shortest paths. Since an exact computation is prohibitive in large networks, several approximation algorithms have been proposed. Besides that, recent years have seen the publication of dynamic algorithms for efficient recomputation of betweenness in evolving networks. In previous work we proposed the first semi-dynamic algorithms that recompute an approximation of betweenness in connected graphs after batches of edge insertions. In this paper we propose the first fully-dynamic approximation algorithms (for weighted and unweighted graphs that need not to be connected) with a provable guarantee on the maximum approximation error. The transfer to fully-dynamic and disconnected graphs implies additional algorithmic problems that can be of independent interest. In particular, we propose a new upper bound on the vertex diameter for weighted undirected graphs. For both weighted and unweighted graphs, we also propose the first fully-dynamic algorithms that keep track of such upper bound. In addition, we extend our former algorithm for semi-dynamic BFS to batches of both edge insertions and deletions. Using approximation, our algorithms are the first to make in-memory computation of betweenness in fully-dynamic networks with millions of edges feasible. Our experiments show that they can achieve substantial speedups compared to recomputation, up to several orders of magnitude.
منابع مشابه
Approximating Betweenness Centrality in Fully Dynamic Networks
Betweenness is a well-known centrality measure that ranks the nodes of a network according to their participation in shortest paths. Because exact computations are prohibitive in large networks, several approximation algorithms have been proposed. Besides that, recent years have seen the publication of dynamic algorithms for efficient recomputation of betweenness in networks that change over ti...
متن کاملApproximating Betweenness Centrality in Large Evolving Networks
Betweenness centrality ranks the importance of nodes by their participation in all shortest paths of the network. Therefore computing exact betweenness values is impractical in large networks. For static networks, approximation based on randomly sampled paths has been shown to be significantly faster in practice. However, for dynamic networks, no approximation algorithm for betweenness centrali...
متن کاملImproving the betweenness centrality of a node by adding links
Betweenness is a well-known centrality measure that ranks the nodes according to their participation in the shortest paths of a network. In several scenarios, having a high betweenness can have a positive impact on the node itself. Hence, in this paper we consider the problem of determining how much a vertex can increase its centrality by creating a limited amount of new edges incident to it. I...
متن کاملFully Dynamic Betweenness Centrality Maintenance on Massive Networks
Measuring the relative importance of each vertex in a network is one of the most fundamental building blocks in network analysis. Among several importance measures, betweenness centrality, in particular, plays key roles in many real applications. Considerable effort has been made for developing algorithms for static settings. However, real networks today are highly dynamic and are evolving rapi...
متن کاملEfficient algorithms for updating betweenness centrality in fully dynamic graphs
Betweenness centrality of a vertex (edge) in a graph is a measure for the relative participation of the vertex (edge) in the shortest paths in the graph. Betweenness centrality is widely used in various areas such as biology, transportation, and social networks. In this paper, we study the update problem of betweenness centrality in fully dynamic graphs. The proposed update algorithm substantia...
متن کامل